This is part 3 of the Question paper set AA1 on HSC Mathematics. You may wish to refer to Part1-Questions and Part2-Questions before starting with this section. The Part 3 section comprises of 15 questions, from 31 to 45.
31) The quadratic equation whose roots are $ \pm i\sqrt7 $ is ……….. a) $ x^2+7=0 $ b) $ x^2-7=0 $ c) $ x^2+x+7=0 $ d) $ x^2-x-7=0 $ 32) If $ \omega $ is the cube root of unity, then the value of $ (1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$ is …………. a) 9 b) –9 c) 16 d) 32 33) If the line 4x+2y=c is a tangent to the parabola $ y^2=16x $ then c is …….. a) –1 b) –2 c) 4 d) –4 34) The focus of the parabola $ x^2=16y $ is ……… a) (4, 0) b) (0, 4) c) (-4, 0) d) (0, –4) 35) The eccentricity of the conic $ 9x^2+5y^2-54x-40y+116=0 $ is ……….. a) $ \frac{1}{3} $ b) $ \frac{2}{3} $ c) $ \frac{4}{9} $ d) $ \frac{2}{\sqrt5} $ 36) The distance between the foci of the ellipse $ 9x^2+5y^2=180 $ is ………. a) 4 b) 6 c) 8 d) 2 37) The sum of the distances of any point on the ellipse $ 4x^2+9y^^2=36 $ from $ (\sqrt5, 0) $ and $ (-\sqrt5, 0) $ is ……………. a) 4 b) 8 c) 6 d) 18 38) The directions of the hyperbola $ x^2-4(y-3)^2=16 $ are: a) $ y=\pm\frac{8}{\sqrt5} $ b) $ x=\pm\frac{8}{\sqrt5} $ c) $ y=\pm\frac{\sqrt5}{8} $ d) $ x=\pm\frac{\sqrt5}{8} $ 39) The equation of the chord of contact of tangents from (2, 1) to the hyperbola $ \frac{x^2}{16}-\frac{y^2}[9}=1 $ is …………. a) 9x-8y-72=0 b) 9x+8y+72=0 c) 8x-9y-72=0 d) 8x+9y+72=0 40) The eccentricity of the hyperbola with asymptotes x+2y-5=0, 2x-y+5=0 is ………. a) 3 b) $ \sqrt2 $ c) $ \sqrt3 $ d) 2 41) One of the foci of the rectangular hyperbola xy=18 is ……………. a) (6, 6) b) (3, 3) c) (4, 4) d) (5, 5) 42) The gradient of the curve $ y=-2x^3+3x+5 $ at x=2 is ……… a) –20 b) 27 c) –16 d) –21 43) The slope of the tangent to the curve $ y = 3x^2+3\; sin\;x $ at x=0 is ……………. a) 3 b) 2 c) 1 d) –1 44) If the normal to the curve $ x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} $ makes an angle $ \Theta $ with the x-axis, then the slope of the normal is …………….. a) $ –cot\;\Theta $ b) $ tan\;\Theta $ c) $ –tan\;\Theta $ d) $ cot\;\Theta $ 45) If $ u=f(\frac{y}{x}) $ then $ x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y} $ is equal to …….. a) 0 b) 1 c) 2u d) u'
No comments:
Post a Comment