This is part 3 of the Question paper set AA1 on HSC Mathematics. You may wish to refer to Part1-Questions and Part2-Questions before starting with this section. The Part 3 section comprises of 15 questions, from 31 to 45.
31) The quadratic equation whose roots are $ \pm i\sqrt7 $ is ………..
a) $ x^2+7=0 $
b) $ x^2-7=0 $
c) $ x^2+x+7=0 $
d) $ x^2-x-7=0 $
32) If $ \omega $ is the cube root of unity, then the value of $ (1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$ is ………….
a) 9
b) –9
c) 16
d) 32
33) If the line 4x+2y=c is a tangent to the parabola $ y^2=16x $ then c is ……..
a) –1
b) –2
c) 4
d) –4
34) The focus of the parabola $ x^2=16y $ is ………
a) (4, 0)
b) (0, 4)
c) (-4, 0)
d) (0, –4)
35) The eccentricity of the conic $ 9x^2+5y^2-54x-40y+116=0 $ is ………..
a) $ \frac{1}{3} $
b) $ \frac{2}{3} $
c) $ \frac{4}{9} $
d) $ \frac{2}{\sqrt5} $
36) The distance between the foci of the ellipse $ 9x^2+5y^2=180 $ is ……….
a) 4
b) 6
c) 8
d) 2
37) The sum of the distances of any point on the ellipse $ 4x^2+9y^^2=36 $ from $ (\sqrt5, 0) $ and $ (-\sqrt5, 0) $ is …………….
a) 4
b) 8
c) 6
d) 18
38) The directions of the hyperbola $ x^2-4(y-3)^2=16 $ are:
a) $ y=\pm\frac{8}{\sqrt5} $
b) $ x=\pm\frac{8}{\sqrt5} $
c) $ y=\pm\frac{\sqrt5}{8} $
d) $ x=\pm\frac{\sqrt5}{8} $
39) The equation of the chord of contact of tangents from (2, 1) to the hyperbola $ \frac{x^2}{16}-\frac{y^2}[9}=1 $ is ………….
a) 9x-8y-72=0
b) 9x+8y+72=0
c) 8x-9y-72=0
d) 8x+9y+72=0
40) The eccentricity of the hyperbola with asymptotes x+2y-5=0, 2x-y+5=0 is ……….
a) 3
b) $ \sqrt2 $
c) $ \sqrt3 $
d) 2
41) One of the foci of the rectangular hyperbola xy=18 is …………….
a) (6, 6)
b) (3, 3)
c) (4, 4)
d) (5, 5)
42) The gradient of the curve $ y=-2x^3+3x+5 $ at x=2 is ………
a) –20
b) 27
c) –16
d) –21
43) The slope of the tangent to the curve $ y = 3x^2+3\; sin\;x $ at x=0 is …………….
a) 3
b) 2
c) 1
d) –1
44) If the normal to the curve $ x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} $ makes an angle $ \Theta $ with the x-axis, then the slope of the normal is ……………..
a) $ –cot\;\Theta $
b) $ tan\;\Theta $
c) $ –tan\;\Theta $
d) $ cot\;\Theta $
45) If $ u=f(\frac{y}{x}) $ then $ x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y} $ is equal to ……..
a) 0
b) 1
c) 2u
d) u'
 
No comments:
Post a Comment