This post is Part 2 of the AA1 question paper series on HSC Mathematics. You may wish to refer to Part 1 - HSC Maths before attempting this section. We presented 15 practice questions in Part 1. The Next set of 15 questions will be provided in this section.
16) If $ \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})+\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})+\overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})=\overrightarrow{x} \times \overrightarrow{y}, $ then a) $ \overrightarrow{x} =\overrightarrow{0} $ b) $ \overrightarrow{y} =\overrightarrow{0} $ c) $ \overrightarrow{x} $ and $ \overrightarrow{y} $ are parallel d) $ \overrightarrow{x} =\overrightarrow{0} $ (or) $ \overrightarrow{y} =\overrightarrow{0} $ (or) $ \overrightarrow{x} $ and $ \overrightarrow{y} $ are parallel 17) If $ [\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}]=64 $, then $ [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] $ is ……… a) 32 b) 8 c) 128 d) 0 18) If a line makes $ 45^{\circ}, 60^{\circ} $ with positive direction of axes x and y, then the angle it makes with the z-axis is ……. a) $ 30^{\circ} $ b) $ 90^{\circ} $ c) $ 45^{\circ} $ d) $ 60^{\circ} $ 19) The shortest distance of the point (2, 10, 1) from the plane $ \overrightarrow{r}.(3\overrightarrow{i}-\overrightarrow{j}+4\overrightarrow{k}) =2\sqrt{26} $ is …….. a) $ 2\sqrt{26} $ b) $ \sqrt{26} $ c) $ 2 $ d) $ \frac{1}{\sqrt{26}} $ 20) $ \overrightarrow{r}=s\overrightarrow{i}+t\overrightarrow{j} $ is the equation of …….. a) A straight line joining the points $ \overrightarrow{i} $ and $ \overrightarrow{j} $ b) xoy plane c) yoz plane d) zox plane 21) The point of intersection of the line $ \overrightarrow{r}=(\overrightarrow{i}-\overrightarrow{j})+t(3\overrightarrow{i}+2\overrightarrow{j}+7\overrightarrow{k}) $ and the plane $ \overrightarrow{r}.(\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k})=8 $ is ………… a) (8, 6, 22) b) (-8, –6, –22) c) (4, 3, 11) d) (-4, –3, –11) 22) The point of intersection of the line $ \frac{x-6}{-6}=\frac{y+4}{4}=\frac{z-4}{-8} $ and $ \frac{x+1}{2}=\frac{y+2}{4}=\frac{z+3}{-2} $ is …………. a) (0, 0 –4) b) (1, 0, 0) c) (0, 2, 0) d) (1, 2, 0) 23) The centre and radius of the sphere given by the equation: $ x^2+y^2+z^2-6x+8y-10z+1=0 $ are …….. a) (-3, 4, –5), 49 b) (-6, 8, –10), 1 c) (3, –4, 5), 7 d) (6, –8, 10), 7 24) The modulus and amplitude of the complex number $ [e^{3-\frac{i\pi}{4}}]^3 $ are respectively ……… a) $ e^9, \frac{\pi}{2} $ b) $ e^9, \frac{-\pi}{2} $ c) $ e^6, \frac{-3\pi}{4} $ d) $ e^9, \frac{-3\pi}{4} $ 25) The modulus of the complex number $ 2+i\sqrt{3} $ is ………. a) $ \sqrt{3} $ b) $ \sqrt{13} $ c) $ \sqrt{7} $ d) $ 7 $ 26) If Z represents a complex number, then $ arg(z)+arg(\overline{z})$ is ………… a) $ \frac{\pi}{4} $ b) $ \frac{\pi}{2} $ c) 0 d) $ \frac{3\pi}{4} $ 27) The polar form of the complex number $ (i^{25})^3 $ is ……………. a) $ cos \frac{\pi}{2}+i\;sin\frac{\pi}{2} $ b) $ cos \frac{\pi}{2}-i\;sin\frac{\pi}{2} $ c) $ cos \pi+i\;sin\pi $ d) $ cos \pi-i\;sin\pi $ 28) $ \frac{1+e^{-i\Theta}}{1+e^{i\Theta}} $ = ……………. a) $ cos\;\Theta+i\;sin\;\Theta $ b) $ cos\;\Theta-i\;sin\;\Theta $ c) $ sin\;\Theta-i\;cos\;\Theta $ d) $ sin\;\Theta+i\;cos\;\Theta $ 29) If $ x= cos\;\Theta+i\;sin\;\Theta $, the value of $ x^n+\frac{1}{x^n} $ is ………… a) $ 2 \; cos \;n\Theta $ b) $ 2i \; sin \;n\Theta $ c) $ 2 \; sin \;n\Theta $ d) $ 2i \; cos \;n\Theta $ 30) The value of $ i+i^22+i^23+i^24+i^25 $ is …….. a) i b) –i c) 1 d) –1
No comments:
Post a Comment