Refer to this post for questions 27 to 33. These questions are of multiple choice type (choose the best answer).
27) The curved surface area of a sphere of radius 5, intercepted between two parallel planes of distance 2 and 4 on the same side from the centre is:
a) $ 20\pi $
b) $ 40\pi $
c) $ 10\pi $
d) $ 30\pi $
28) The arc length of the curve y = f(x) from x = a to x = b is:
a) $ \int_{a}^{b}\sqrt{(1+(\frac{\mathrm{d}y }{\mathrm{d} x})^2}\;\;dx $
b) $ \int_{a}^{b}\sqrt{(1+(\frac{\mathrm{d}x }{\mathrm{d} y})^2}\;\;dx $
c) $ 2\pi\int_{a}^{b}y\sqrt{(1+(\frac{\mathrm{d}y }{\mathrm{d} x})^2}\;\;dx $
d) $ 2\pi\int_{a}^{b}y\sqrt{(1+(\frac{\mathrm{d}x }{\mathrm{d} y})^2}\;\;dx $
29) Solution of $ \frac{\mathrm{d}y }{\mathrm{d} x} + mx=0 $, where m<0 is:
a) $ x=ce^{my} $
b) $ x=ce^{-my} $
c) $ x=my+c $
d) $ x=c $
30) The differential equation $ (\frac{\mathrm{d}y }{\mathrm{d} x})^2\;+\;5y^\frac{1}{3} = x $ is:
a) of order 2 and degree 1
b) of order 1 and degree 2
c) of order 1 and degree 6
d) of order 1 and degree 3
31) The equations of the latus rectum of $ \frac{x^2}{16}+\frac{y^2}{9}=1 $, are:
a) $ y=\pm \sqrt{7} $
b) $ x=\pm \sqrt{7} $
c) $ x=\pm \;7 $
d) $ y=\pm\; 7 $
32) The eccentricity of the hyperbola $ 12y^2-4x^2-24x+48y-127=0 $ is:
a) 4
b) 3
c) 2
d) 6
33) The length of the latus rectum of the rectangular hyperbola xy = 32 is :
a) $ 8\sqrt{2} $
b) $ 32 $
c) $ 8 $
d) $ 16 $
Refer to the question ranges here 1-6 , 7-12 , 13-19 and 20-26 .
SSLC Maths - Objective type Questions
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment