Model One Mark Questions - SSLC Mathematics

+2 Maths one mark question collection for Practice - Part2:

7) If ‘f' has a local extremum at ‘a’ and if $ f^{'}(a) $ exists then

a) $ f^{'}(a) < 0 $

b) $ f^{'}(a) > 0 $

c) $ f^{'}(a) = 0 $

d) $ f^{''}(a) = 0 $



8) If $ u = log[\frac{(x^{2}+y^{2})}{xy}] $ then $ x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} $ is

a) 0

b) u

c) 2u

d) $ u^{-1} $



9) The curve $ a^{2}y^{2} = x^{2} (a^{2}-x^{2}) $ has

a) only one loop between x = 0 and x = a

b) two loops between x = 0 and x = a

c) two loops between x = -a and x = a

d) no loop.



10) The value of $ \int_{0}^{\frac{\pi }{4}} cos^{3}\; 2x\; dx $ is:

a) $ \frac{2}{3} $

b) $ \frac{1}{3} $

c) 0

d) $ \frac{2\pi}{3} $



11) The modulus and amplitude of the complex number $ [e^{(3-\frac{i\pi}{4})}]^{3} $ are respectively:

a) $ e^9 $, $ \frac{\pi }{2} $

b) $ e^9 $, $ -\frac{\pi }{2} $

c) $ e^6 $, $ -\frac{3\pi }{4} $

d) $ e^9 $, $ -\frac{3\pi }{4} $



12) If P represents the variable complex number ‘z’, and if $ \mid 2z-1\mid \; = \; 2\mid z \mid $, then the locus of P is:

a) the straight line $ x \; = \; \frac{1}{4} $

b) the straight line $ y \; = \; \frac{1}{4} $

c) the straight line $ z \; = \; \frac{1}{2} $

d) the circle $ x^{2}+y^{2}-4x-1=0 $.

Refer here for question range 1-7 .

No comments:

Post a Comment